

Network identifiability - Analysis

Paul Van den Hof

Doctoral School Lyon, France, 11-12 April 2024

www.sysdynet.eu www.pvandenhof.nl p.m.j.vandenhof@tue.nl

- Introduction background starting from the open-loop case
- Definition(s) of network identifiability
- Two technical results / conditions for evaluating identifiability
- Generic identifiability through path-based graph conditions
- Discussion and Summary

Introduction – classical situation

When are models essentially different (in view of identification)?

In classical PE identification: Models are indistinguishable (from data) if their predictor filters are the same:

$$\hat{y}(t|t-1) = \underbrace{H(q)^{-1}G(q)}_{W_u(q)} u(t) + \underbrace{[1-H(q)^{-1}]}_{W_y(q)} y(t)$$

Introduction – classical situation

Introduction – classical situation

Network identifiability problem

The network model:

w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)

can be transformed with any rational P(q):

 $P(q)w(t) = P(q)\{G(q)w(t) + R(q)r(t) + G(q)e(t)\}$

to an equivalent model:

$$w(t) = \tilde{G}(q)w(t) + \tilde{R}(q)r(t) + \tilde{H}(q)\tilde{e}(t)$$

 \implies Nonuniqueness, unless there are structural constraints on G, R, H.

Network identifiability problem

How can we formalize this problem?

Based on measured data w and r, and knowing that r will always be an input, i.e. there is no effect from w on r, we can write the network expression: $w(t) = T_{wr}(q)r(t) + \underbrace{T_{we}(q)e(t)}_{we}(q)e(t)$

 $ar{v}(t)$

with
$$T_{wr} = (I-G)^{-1}R$$
 and $T_{we} = (I-G)^{-1}H$.

This implies that the information that maximally can be extracted¹ from w,r can be represented by $(T_{wr},\Phi_{ar v})$

So the network identifiability question can be phrased as:

Is there a unique map from $(T_{wr}, \Phi_{ar{v}})$ to (G, R, H)?

Network identifiability problem

$$w(t) = T_{wr}(q)r(t) + \underbrace{T_{we}(q)e(t)}_{\bar{v}(t)}$$

Is there a unique map from $(T_{wr}, \Phi_{ar{v}})$ to (G, R, H)?

What would happen if this mapping is non-unique?

Then there are different network models (G_1, R_1, H_1) , (G_2, R_2, H_2) with possibly different network topologies, that generate the same $(T_{wr}, \Phi_{\bar{v}})$, and thus cannot be distinguished from measured (w, r).

blue = unknown/parametrized
red = fixed/known

- Like in "classical" identification we apply the identifiability concept to a model set
- Network identifiability can be achieved by having a sufficient number of restrictions in the model set, e.g. on the topology of G
- In the parametrized model set some elements can be fixed (because they are assumed to be known a priori)

Network: $w = G^0 w + R^0 r + H^0 e$

$$cov(e)=\Lambda^0,\;\;$$
 rank p

dim(*r*) = *K*

The network is defined by: $(G^0, R^0, H^0, \Lambda^0)$ a network model is denoted by: $M = (G, R, H, \Lambda)$ and a **network model set** by:

 $\mathcal{M} = \{M(heta) = (G(heta), R(heta), H(heta), \Lambda(heta)), heta \in \Theta\}$

represents prior knowledge on the network models:

- topology
- disturbance correlation
- known (non-parametrized) modules
- external excitation signals available

Definition Network identifiability^[1]

For a network model set \mathcal{M} , consider a model $M(heta_0) \in \mathcal{M}$ and the implication

$$\begin{cases} T_{wr}(q,\theta_0) = T_{wr}(q,\theta_1) \\ \Phi_{\bar{v}}(\omega,\theta_0) = \Phi_{\bar{v}}(\omega,\theta_1) \end{cases} \\ \end{cases} \Longrightarrow \left\{ \begin{array}{l} M(\theta_0) = M(\theta_1), \\ \text{for all } M(\theta_1) \in \mathcal{M} \end{array} \right.$$

Then ${\mathcal M}$ is

- globally identifiable from (w,r) at $M(heta_0)$ if the implication holds for $M(heta_0)$;
- globally identifiable from (w,r) if it holds for all $M(heta_0)\in\mathcal{M}$;
- generically identifiable $^{[2]}$ from (w,r) if it holds for almost all $M(heta_0)\in\mathcal{M}$;

Weerts et al., Automatica, March 2018;
 Hendrickx et al., IEEE-TAC, 2019.

[3] Legat and Hendrickx, CDC 2020, present a local version, where the implication above is requested to hold only in a neighborhood of $M(\theta_0)$

The pair of objects $(T_{wr}, \Phi_{\bar{v}})$ plays a central role It would be attractive (for analysis) to consider the pair (T_{wr}, T_{we})

Under which conditions does $\Phi_{\bar{v}} = (I - G)^{-1} H \Lambda H^* (I - G)^{-*}$ provide a unique $T_{we} = (I - G)^{-1} H$?

e.g. if $(I-G)^{-1}H$ is monic then spectral factorization of $\Phi_{ar v}$ provides a unique T_{we}

Proposition

If 1. The modules in $G(\theta)$ are strictly proper, or 2. No algebraic loops in $G(\theta)$ and $H^{\infty}(\theta)\Lambda(\theta)H^{\infty}(\theta)^{T}$ is diagonal, with $H^{\infty}(\theta) := \lim_{z \to \infty} H(z, \theta)$ Then $\{T_{wr}, \Phi_{\bar{v}}\} \Leftrightarrow \{T_{wr}, T_{we}, \Lambda\}$

Explanation

No algebraic loops in $G(heta) \Longrightarrow$

By row and column permutations, $G^{\infty}(\theta)$ can be turned into an upper triangular matrix Then $(I - G^{\infty})^{-1}$ has ones on the diagonal \Longrightarrow

With $\Phi_{\overline{v}}^{\infty} = (I - G^{\infty})^{-1} \underbrace{H^{\infty} \Lambda (H^{\infty})^T}_{\text{diagonal}} (I - G^{\infty})^{-T}$ and H monic,

This fixes Λ when given $\Phi^\infty_{\bar v}$ and removes all scaling freedom in the spectral factorization on $\Phi_{\bar v}$

If the conditions of the proposition are satisfied, then the implication in the identifiability definition can be turned into:

$$\left. \begin{array}{c} T_{wr}(q,\theta_1) = T_{wr}(q,\theta_0) \\ T_{we}(q,\theta_1) = T_{we}(q,\theta_0) \\ \Lambda(\theta_1) = \Lambda(\theta_0) \end{array} \right\} \Longrightarrow M(\theta_1) = M(\theta_0)$$

or equivalently:

$$\left. \begin{array}{l} T_{wr}(q,\theta_1) = T_{wr}(q,\theta_0) \\ T_{we}(q,\theta_1) = T_{we}(q,\theta_0) \end{array} \right\} \Longrightarrow \left(G(\theta_1), R(\theta_1), H(\theta_1) \right) = \left(G(\theta_0), R(\theta_0), H(\theta_0) \right)$$

Network identifiability of ${\mathcal M}$ from (w,r) is determined by the implication

 $\left. \begin{array}{l} T_{wr}(q,\theta_1) = T_{wr}(q,\theta_0) \\ T_{we}(q,\theta_1) = T_{we}(q,\theta_0) \end{array} \right\} \Longrightarrow (G(\theta_1), R(\theta_1), H(\theta_1)) = (G(\theta_0), R(\theta_0), H(\theta_0)) \\ \\ \text{for all } M(\theta_1) \in \mathcal{M} \end{array}$

- Network identifiability is a property of a parametrized model set
- It is not dependent on any identification method
- It focusses on uniquenes of network models, rather than of parameters

Different results for network identifiability

- (Conservative) result that is independent of the structure in $G(\theta)$
- More technical result that builds on the structure in $G(\theta)$
- Path-based result on the network graph for generic identifiability

First (conservative) network identifiability result

Denote $U(heta) := ig[H$	$m{R}(m{ heta}) m{H}(m{ heta}) ig]$
and $T_{wu} = ig[T_{wr}ig]$	$T_{we}ig]$
Then	$T_{wu} = (I - G(heta))^{-1} U(heta)$
and	$(I-G(heta))T_{wu}=U(heta)$

Prime identifiability question:

Do G(heta), U(heta) uniquely follow from T_{wu} ?

 $U(q, \theta) \in \mathbb{R}(q)^{L imes (K+p)}$ where K + p is the number of external r + e signals.

First (conservative) network identifiability result

Sufficient condition for network identifiability^{[1],[2]} – full excitation case

Consider model set \mathcal{M} , and let $U(q, \theta)$ be full row rank $\forall \theta$. Then \mathcal{M} is globally network identifiable from (r, w) if there exists a nonsingular and parameter-independent matrix $Q(q) \in \mathbb{R}^{(K+p) \times (K+p)}$ such that

$$U(q, heta)Q(q) = egin{bmatrix} D(q, heta) & F(q, heta) \end{bmatrix}$$

with $D(q, \theta)$ diagonal and full rank for all θ .

- Rank condition on $U(q, \theta)$ implies that $K + p \ge L$, i.e. there are at least as many external signals as there are nodes (full excitation)
- The resulting condition is independent of the structure in $G(q, \theta)$.

Reasoning

$$(I - G(\theta))T_{wu}Q = U(\theta)Q$$

 $(I-G(heta))T_{wu}Q=egin{bmatrix} D(heta) & F(heta) \end{bmatrix}$

With $T_{wu}Q = egin{bmatrix} A & B \end{bmatrix}$ and A full rank, it follows that

$$D(\theta)^{-1}(I - G(\theta))A = I$$

(I - G(\theta))B = F(\theta)

Since $D(\theta)$ is diagonal and $I - G(\theta)$ is hollow, uniqueness of $D(\theta)$ and $G(\theta)$ follows. Then also $F(\theta)$ is unique.

Example 1

Parametrized model set \mathcal{M} with

$$G(\theta) = \begin{bmatrix} 0 & G(\theta) \\ -C(\theta) & 0 \end{bmatrix}, \quad R(\theta) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad H(\theta) = \begin{bmatrix} H(\theta) \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & H(\theta) \\ 1 & 0 \end{bmatrix} \text{ can be made diagonal by elementary column operations}$$

 $U(\theta) = \begin{bmatrix} 0 & H(0) \\ 1 & 0 \end{bmatrix}$ can be made diagonal by elementary column operations

 $\Longrightarrow \mathcal{M}$ is globally network identifiable.

Consider a model set \mathcal{M} where v_1 and v_2 are allowed to be correlated:

$$\mathcal{M} \text{ with } H(\theta) = \begin{bmatrix} H_{11}(\theta) & H_{12}(\theta) & 0 \\ H_{21}(\theta) & H_{22}(\theta) & 0 \\ 0 & 0 & H_{33}(\theta) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, R = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

There is enough excitation, but U can not be transformed to a diagonal matrix. \implies No conclusion that holds for any choice of $G(\theta)$

Interpretation

Interpretation of result:

Diagonalizability of $U(\theta)$ is implied by: having independent external signals at every node

Consequence:

Given data from any LTI dynamic network, there always exists a representing model with diagonal $m{H}$

But this does not necessarily represent the structured network that has generated the data

Dynamic network setup - nonuniqueness

Node signals $w_1(t), w_2(t)$ being invariant

Second network identifiability result

Towards a more general result that takes account of the structure of $G(\theta)$:

 $(I - G(\theta))T_{wu} = U(\theta)$

Do $G(\theta), U(\theta)$ uniquely follow from T_{wu} ?

Consider row j of this equation. Reorder the columns of $(I - G(\theta))$ and $U(\theta)$ such that $\begin{bmatrix} G_1(\theta) & G_2 \end{bmatrix}_{j\star} PT_{wu} = \begin{bmatrix} U_1 & U_2(\theta) \end{bmatrix}_{j\star} Q \qquad P, Q \text{ permutation matrices}$ Then $\begin{bmatrix} G_1(\theta) & G_2 \end{bmatrix}_{j\star} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} U_1 & U_2(\theta) \end{bmatrix}_{j\star} \text{ with } \begin{bmatrix} A & B \\ C & D \end{bmatrix} = PT_{wu}Q^{-1}$

 \implies $G_1(\theta)_{j\star}, U_2(\theta)_{j\star}$ are uniquely determined if A has full row rank.

Second network identifiability result

Sufficient condition for network identifiability^[1] – general case Consider model set \mathcal{M} , and define for each $j \in [1, L]$: $\check{T}_j :=$ the transfer function from

- all external signals (r, e) that do not enter w_j through a parametrized module, to
- all node signals w that map to w_j through a parametrized module.

Then \mathcal{M} is globally network identifiable from (r,w) if for all $j\in [1,L]$:

 \breve{T}_j is full row rank for all $heta \in \Theta$.

The result allows for K + p < L and distinguishes between parametrized and non-parametrized (fixed) modules in \mathcal{M} .

Second network identifiability result

An immediate consequence of the condition is that

 \sharp parametrized entries in $egin{bmatrix} G(heta) & R(heta) & H(heta) \end{bmatrix}_{i\star} \leq K+p$

Proof:

Follows directly from full row rank condition on $reve T_j$:

 \sharp param $G(heta)_{j\star} \leq K + p - \sharp$ param $[R(heta) \ H(heta)]_{j\star}$

[1] Weerts et al, Automatica, March 2018.

Second network identifiability result – using G-structure

The condition becomes also necessary if we add some conditions on \mathcal{M} :

- All parametrized entries in ${\cal M}$ are parametrized independently, and
- Each parametrized entry in ${\boldsymbol{\mathcal{M}}}$ is not limited in order, and
- Regularity condition on the fixed/non-parametrized modules

Example 5-node network (continued)

If we restrict the structure of $G(\theta)$:

First check: Number of parametrized entries in each row < K + p = 5

Example 5-node network (continued)

TU/e

Example 5-node network (continued)

Issues:

- Such a rank test is not easy to apply
- and needs to be done for every $j=1,\cdots L$

Alternative:

• Evaluate the rank tests for the "generic" case, i.e. independent of the particular numerical values of the several transfer functions

Generic identifiability

Generic rank and vertex disjoint paths^{[1],[2],[3]}

The **generic rank** of a transfer function matrix between

inputs $oldsymbol{u}$ and nodes $oldsymbol{w}$

is equal to the maximum number of **vertex disjoint paths** between the sets of inputs and outputs.

A path-based check on the topology of the network model set can decide whether the conditions for identifiability are satisfied generically.

[1] Van der Woude, 1991; [2] Bazanella et al., CDC 2017; [3] Hendrickx et al., 2019.

Generic rank

The generic rank of a transfer function can be evaluated by graph-based conditions

There are graph algorithms for calculating this, based on the topology of the network No numerical evaluation based on dynamic systems coefficients.

Verifying the rank condition for w_1 :

Full row rank of

2 vertex-disjoint paths \rightarrow full row rank 2

Verifying the rank condition for w_2 :

Full row rank of

2 vertex-disjoint paths \rightarrow full row rank 2

Verifying the rank condition for w_3 :

Full row rank of

1 vertex-disjoint path \rightarrow full row rank 1

Verifying the rank condition for w_4 :

 w_2

Full row rank of

Verifying the rank condition for w_5 :

Full row rank of

Conclusion 5-node example

The structured model set is generically identifiable

If the feedback connection $w_3 o w_2$ were to be changed to $w_3 o w_4$, then lack of identifiability occurs for the situation j=1

Generic identifiability

Result provides an **analysis tool**, but is less suited for the **synthesis** question:

Given a parametrized network model set:

Where to add external excitation signals to reach generic network identifiability of the full network?

Problem is the "merging" of the results for all $j=1,\cdots L$

Identifiability concept

We started with three different network identifiability concepts^[1]:

- (a) Global identifiability at $M(heta_0)$
- (b) Global identifiability
- (c) Generic identifiability

In an identification setting, we do not know the system, so concept (a) is less relevant;

With concepts (b) and (c), identifiability is a verifiable property of a model set, rather than an assumption on the underlying system.

[1] Legat and Hendrickx (CDC 2020), introduced the concept of local (generic) identifiability.

Discussion identifiability

Identifiability of a network model property

• Rather than focusing on the full network model, a model **property** can be taken as object for identifiability

$$T(q, \theta_0) = T(q, \theta_1) \Longrightarrow \mathbf{f}(M(\theta_0) = \mathbf{f}(M(\theta_1)))$$

as e.g. one particular module:

 $\boldsymbol{f}(M(\theta)) = G_{ji}(\theta)$

This will be addressed separately in single module identifiability

Summary identifiability of full network

Identifiability of network model sets is determined by

- Topology of parametrized modules in model set
- Presence and location of external signals, and
- Presence and correlation structure of disturbances
- Two different concepts: global (with algebraic conditions) and generic (with path-based conditions)
- Presented results: all node signals $oldsymbol{w}$ assumed to be measurable
- Fully applicable to the situation p < L (reduced-rank noise)
- Sufficient conditions for different cases: full excitation case and general case (dependent on topology of G(heta))
- Results not yet suited for synthesis