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Network identifiability

* Introduction — background starting from the open-loop case

* Definition(s) of network identifiability

* Two technical results / conditions for evaluating identifiabiltiy
e Generic identifiability through path-based graph conditions

e Discussion and Summary
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Introduction — classical situation I

When are models essentially different (in view of identification)?

v
In classical PE identification: —»| ¢ ,,é_,

Models are indistinguishable (from data) if
their predictor filters are the same:

g(tlt — 1) = H(q) " G(q) u(t) + [1 — H(q) " y(®)

W (q) Wy (q)

TU/e



Introduction — classical situation

Two models can not be

predictor: g(t[t —1501) = g(t|t — 1;62) distinguished from data

l—» data informativity for model set (Ljung, 1999)

Wy (Q7 01) = Wy(q7 02)

predictor filters:
Wu(qael) — Wu(Q792)
l — trivial for classical (open-loop) case

models: G(q,0:) = G(q,02)
H(qael) — H(q992)

— |dentifiability of model structure

parameters: 9, = 0,
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Introduction — classical situation

predictor: g(t|t — 1501) = g(t|t — 1;02)

|

Wy (q7 91) = Wy(q7 02)

predictor filters:
Wu(qagl) — Wu(q792)

l —— Non-trivial for network case
models: G(q,0:) = G(q,02)

Reason:
H(q,6.) = H(q,0) e Freedom in network structure
* Freedom in presence of excitations and
disturbances
parameters: 0, = 6,
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Network identifiability problem

The network model:
w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t)

can be transformed with any rational P(q):

P(q)w(t) = P(q){G(q)w(t) + R(q)r(t) + G(q)e(t)}
to an equivalent model:

w(t) = G(q)w(t) + R(q)r(t) + H(q)&(t)

—> Nonuniqueness, unless there are structural constraints on G, R, H.

TU/e



Network identifiability problem

How can we formalize this problem?

Based on measured data w and r, and knowing that = will always be an input,
i.e. there is no effect from w on 7,
we can write the network expression:  w(t) = Ty (q)7(t) + Twe(q)e(t)

3(t)

With Tyr = (I — G)™ 'R and Tye = (I — G)™'H.

This implies that the information that maximally can be extracted from w, 7
can be represented by (Tor, P3)

So the network identifiability question can be phrased as:

Is there a unique map from (Toy, ®5) to (G, R, H)?

Based on second order signal properties TU/e



Network identifiability problem

w(t) = Twr(q)r(t) + Twe(q)e(t)

5(t)

Is there a unique map from (T, ®5) to (G, R, H)?

What would happen if this mapping is non-unique?

Then there are different network models (G, Ry, H1), (G2, R2, H2)
with possibly different network topologies,
that generate the same (T, ®5),

and thus cannot be distinguished from measured (w, r).

TU/e



Network identifiability

blue = unknown/parametrized
red =fixed/known

e Like in “classical” identification we apply the identifiability concept to a model set

e Network identifiability can be achieved by having a sufficient number of
restrictions in the model set, e.g. on the topology of G

* |n the parametrized model set some elements can be fixed
(because they are assumed to be known a priori)

TU/e
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Network identifiability

Network:

w = G’w+ R°r + He cov(e) = A°, rankp

dim(r) =K

The network is defined by: (G°, R°, H?, A°)
a network model is denoted by: M = (G, R, H, A)

and a network model set by:

M ={M(0) = (G(0), R(0), H(0),A(0)),0 € O}

represents prior knowledge on the network models:
e topology

disturbance correlation
known (non-parametrized) modules
external excitation signals available

TU/e
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Network identifiability

Definition Network identifiability!!

For a network model set M, consider a model M (8p) € M and the implication
Twr(q,00) = Twr(q,61) o
B5(w,00) = Bys(w,01) | { M(60) = M(61),

forall M (6,) € M
Then M is

o globally identifiable from (w, r) at M (6y) if the implication holds for M (6y);
e globally identifiable from (w, 7) if it holds for all M (6¢) € M,

o generically identifiablel from (w, 7) if it holds for almost all M (8y) € M;

[1] Weerts et al., Automatica, March 2018; [3] Legat and Hendrickx, CDC 2020, present a local version, where the implication above is TU
[2] Hendrickx et al., IEEE-TAC, 2019. requested to hold only in a neighborhood of M (6o) e
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Network identifiability

The pair of objects (T, 5 ) plays a central role
It would be attractive (for analysis) to consider the pair (Twr, Towe)

Under which conditions does ®; = (I — G)"'HAH*(I — G)™*
provide a unique Tye = (I — G) " 'H?

e.g. if (I — G)~1H is monic then spectral factorization of ®3 provides a unique Ty,e

Proposition
If 1. The modules in G(6) are strictly proper, or
2. No algebraic loops in G(0) and
H>(0)A(0)H>(6)T is diagonal, with H>°(8) := lim,_,o H(z,0)
Then {Tyr, 5} < {Twr, Tope, A}

[1] Weerts et al., Automatica, March 2018;
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Network identifiability

Explanation

No algebraic loops in G(0) —-

By row and column permutations, G°° () can be turned into an upper triangular matrix
Then (I — G°°)~! has ones on the diagonal =

With ®%° = (I — G*°)~! ymA(Hw)T;(I — G*°)~T and H monic,

diagonal

This fixes A when given ®2°
and removes all scaling freedom in the spectral factorization on ® 3

TU/e
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Network identifiability

If the conditions of the proposition are satisfied, then the implication in the

identifiability definition can be turned into:

w'r'(q7 01) — w’r((b 00)
we(Q9 91) = we(qv 90) — M(el) = M(OO)

or equivalently:

o) = Tt g ) = (1000 H00) = (G0 0. )

TU/e
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Network identifiability

Network identifiability of M from (w, r) is determined by the implication

Twr(q7 01) = Twr(qa 00)
Twe(Qv 91) — Twe(q? 90)

forall M(6,) € M

} — (G(01), R(6:), H(61)) = (G(80), R(00), H(60))

Network identifiability is a property of a parametrized model set

It is not dependent on any identification method

It focusses on uniquenes of network models, rather than of parameters

TU/e



16

Network identifiability

Different results for network identifiability

* (Conservative) result that is independent of the structure in G(6)
* More technical result that builds on the structure in G(0)

e Path-based result on the network graph for generic identifiability

TU/e
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First (conservative) network identifiability result

Denote U(0) := |[R(6) H(0)]
and Ty, = |Twr Twe)

Then Twe = (I — G(0))"1U(6)
and (I — G(0))Ty, =U(0)

Prime identifiability question:
Do G(0),U (60) uniquely follow from T, ?

U(q,8) € R(q)L*(E+P) where K + pis the number of external r + e signals.

TU/e
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First (conservative) network identifiability result

Sufficient condition for network identifiability!1.[2! — full excitation case

Consider model set M, and let U(q, 6) be full row rank V6.

Then M is globally network identifiable from (r, w) if there exists a nonsingular and
parameter-independent matrix Q(g) € REKFP)X(K+P) gych that

U(q,0)Q(q) = |D(q,0) F(q,6)]

with D(q, 0) diagonal and full rank for all 6.

* Rank condition on U (g, @) implies that K + p > L, i.e. there are at least as many external

signals as there are nodes (full excitation)

* The resulting condition is independent of the structure in G(q, 0).

[1] Goncalves and Warnick, 2008;
[2] Weerts et al, Automatica, March 2018.;

TU/e
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Network identifiability

Reasoning

(I — G(0))Twu@ =U(0)Q
(I = G(9))Twu@ = [D(0) F(0)]

With T,,,Q = |[A  B] and A full rank, it follows that
DO ' I-GO)A = I
(I-G(0)B = F(6)

Since D () is diagonal and I — G() is hollow, uniqueness of D(8) and G(8) follows.
Then also F(0) is unique.

TU/e
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Example 1

c=[ Ly 9 0= o=

Ug) = [(1) I—I(()Q)] can be made diagonal by elementary column operations

—> M is globally network identifiable.

TU/e
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Example 2

Consider a model set M where v, and v, are allowed to be correlated:

M with H(0) =

There is enough excitation, but U can not be transformed to a diagonal matrix.
— No conclusion that holds for any choice of G(0)

—H11(0) H12(9)
H21 (9) H22(9)

0 0
0 0
0 0

0

0
H33(0)

0

0

o =0 o O

= o O O O

TU/e
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Interpretation

Interpretation of result:

Diagonalizability of U (0) is implied by:
having independent external signals at every node
Consequence:

Given data from any LTI dynamic network, there always
exists a representing model with diagonal H

But this does not necessarily represent the structured
network that has generated the data

TU/e
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Dynamic network setup - nonuniqueness

Node signals w1 (t), w2 (t) being invariant

[1] G. Bottegal et al., SYSID2018

TU/e
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Second network identifiability result

Towards a more general result that takes account of the structure of G(8):
(I — G(8))Twy = U(0)
Do G(0), U () uniquely follow from T,,?

Consider row 7 of this equation.
Reorder the columns of (I — G(8)) and U (0) such that

(G1(0) G3|. PTyu=[U1 Uz(9)].,Q P, Q permutation matrices

J Jx

Then A B A B

[Gl(g) G2]j* [C D] = [U1 U2(9)]3* with [C D] = PT,qu—l

=—> G1(0)jx, U2(0) are uniquely determined if A has full row rank.

TU/e
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Second network identifiability result

Sufficient condition for network identifiability!l — general case
Consider model set M, and define for each 5 € [1, L|:
T’; := the transfer function from

o all external signals (r, e) that do not enter w; through a parametrized module, to

* all node signals w that map to w; through a parametrized module.

Then M is globally network identifiable from (7, w) if for all 3 € [1, L]:

o

T} is full row rank for all @ € ©.

The result allows for K + p < L and distinguishes between parametrized and
non-parametrized (fixed) modules in M.

[1] Weerts et al, Automatica, March 2018. TU/e
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Second network identifiability result

An immediate consequence of the condition is that

f parametrized entriesin [G(0) R(6) H(0)|.. < K +p

Jx

Proof:

Follows directly from full row rank condition on Tj:

§ param G(0) . < K + p — i param [R(6) H (0)]

[1] Weerts et al, Automatica, March 2018.
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Second network identifiability result — using G-structure

The condition becomes also necessary if we add some conditions on M.:

o All parametrized entries in M are parametrized independently, and
e Each parametrized entry in M is not limited in order, and

* Regularity condition on the fixed/non-parametrized modules

Weerts et al., Automatica, March 2018; Shi et al. Automatica, March 2022. TU/e
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Example 5-node network (continued)

If we restrict the structure of G(6) :

G(9) =

0
G21(0)

First check:
Number of parametrized entriesineachrow < K +p =5 @

G12(0)
0

0
G23(0)
0

0
0
G34(0)

[H R =

Hi1(0) Hiz(0) 0 0 0

H»1(0) H22(0) 0 0 0

0 0 Hs@®) 0 0

0 0 0 1 0

0 0 0 0 1
K+;=5

TU/e



Example 5-node network (continued)

Is Vy Vo Iy V3

wy Wy / W3

Rank condition: .
evaluation of Tj for 3 = 1:

Goo 3

0 Gi2(0) 0 0 Gi5(0) [H1,(0) Hi2() 0 0 0
G21(0) 0 Gg3(0) 0 0 Hy(0) Hyz(f) 0 0 0O
GO)=| o0 0 0 Gsu() 0 [HR=| o0 0 Hs) 0 0
0 1 0 0 0 0 0 0 10
0 0 Gs3(6) O 0 0 0 0 0 1]
K-|—‘;:5

U3
Tl | re| — [52] has to have full row rank VO € ®
5

TU/e
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Example 5-node network (continued)

Is Vy Vo Iy V3

wy Wy 4 W3

Issues:

e Such a rank test is not easy to apply

e and needs to be done foreveryy = 1,:-- L

Alternative:

e Evaluate the rank tests for the “generic” case, i.e.
independent of the particular numerical values of the several transfer functions

TU/e
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Generic identifiability

Generic rank and vertex disjoint paths!1}[213]

The generic rank of a transfer function matrix between
inputs w and nodes w

is equal to the maximum number of vertex disjoint paths between the
sets of inputs and outputs.

A path-based check on the topology of the network model set can decide
whether the conditions for identifiability are satisfied generically.

[1] Van der Woude, 1991; [2] Bazanella et al., CDC 2017; [3] Hendrickx et al., 2019. TU/e
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Generic rank

The generic rank of a transfer function can be evaluated by graph-based conditions

Generic rank = number of vertex-disjoint paths

There are graph algorithms for calculating this, based on the topology of the network

No numerical evaluation based on dynamic systems coefficients.

TU/e



Example 5-node network

Verifying the rank condition for w; : Full row rank of
rs 4]
iii v
T4| —
A Ws
s

23

2 vertex-disjoint paths = full row rank 2 @

TU/e
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Example 5-node network

Verifying the rank condition for ws:

2 vertex-disjoint paths = full row rank 2

Full row rank of

V3

o)

TU/e
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Example 5-node network

Verifying the rank condition for ws:

1 vertex-disjoint path = full row rank 1

Full row rank of

= |wd]

TU/e
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Example 5-node network

Verifying the rank condition for wy:

1 vertex-disjoint paths = full row rank 1

Full row rank of

rg| — |w2]

TU/e
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Example 5-node network

Verifying the rank condition for ws:

A

1 vertex-disjoint paths = full row rank 1

Full row rank of

rs| — |ws]

TU/e
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Conclusion 5-node example

The structured model set is generically identifiable

If the feedback connection wg — w9 were to be changed to wg — wy, then lack
of identifiability occurs for the situationy = 1

TU/e
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Generic identifiability

Result provides an analysis tool, but is less suited for the synthesis question:

Given a parametrized network model set:

Where to add external excitation signals to reach generic network
identifiability of the full network?

Problem is the “merging” of the results forally = 1,--- L

TU/e
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Identifiability concept

We started with three different network identifiability concepts!!:

(a) Global identifiability at M (6g)
(b) Global identifiability
(c) Generic identifiability

In an identification setting, we do not know the system, so concept (a) is less relevant;

With concepts (b) and (c), identifiability is a verifiable property of a model set,
rather than an assumption on the underlying system.

[1] Legat and Hendrickx (CDC 2020), introduced the concept of local (generic) identifiability. TU/e
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Discussion identifiability

Identifiability of a network model property

e Rather than focusing on the full network model, a model property can be
taken as object for identifiability

T(q,00) = T(q,01) = f(M(6o) = f(M(61))
as e.g. one particular module:

f(M(0)) = G;:(0)

This will be addressed separately in single module identifiability

TU/e
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Summary identifiability of full network

Identifiability of network model sets is determined by

e Topology of parametrized modules in model set
* Presence and location of external signals, and
* Presence and correlation structure of disturbances

e Two different concepts:
global (with algebraic conditions) and generic (with path-based conditions)

* Presented results: all node signals w assumed to be measurable

e Fully applicable to the situation p < L (reduced-rank noise)

e Sufficient conditions for different cases:

full excitation case and general case (dependent on topology of G(6))
e Results not yet suited for synthesis

TU/e
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